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Abstract- We will present an overview of the 
CLARAty architecture which aims at developing reusable 
software components for robotic systems. These com- 
ponents are to support autonomy software which  plans 
and schedules robot activities. The CLARAty architec- 
ture modifies the conventional three-level robotic archi- 
tecture into a new two-layered design: the Functional 
Layer and the Decision Layer. The Functional Layer  pro- 
vides a representation of the system components and an 
implementation of their basic functionalities. The Deci- 
sion Layer is the decision making engine that drives the 
Functional Layer.  It globally reasons about the intended 
goals, system resources, and state of the  system and its 
environment. The Functional Layer  is composed of a set 
of interrelated object-oriented hierarchies consisting of 
active and passive objects  that represent the different 
levels of system abstractions. In this paper, we present 
an overview of the design of the Functional  Layer. The 
Functional Layer  is decomposed into a set of reusable 
core components and a set of extended components that 
adapt the reusable set  to different  hardware implemen- 
tations. The reusable components: (a) provide  interface 
definitions and implementations of basic functionality, 
(b) provide local executive capabilities, (c) manage local 
resources, and (d) support state and resource  queries by 
the Decision Layer. 

I. INTRODUCTION 

With  the increased interest in developing rovers  for 
future Mars exploration missions, a significant number 
of rover platforms have been designed and built in the 
last few years. Researchers and engineers at  the  Jet 
Propulsion Laboratory, California Institute of Technol- 
ogy, NASA Centers,  and universities use these plat- 
forms to test new concepts and validate algorithms for 
the control and  operation of autonomous  robotic vehi- 
cles. Because of the differences in  the mechanical and 
electrical design of these vehicles, they  share  little in 
terms of software infrastructure. Transferring capabil- 
ities from one rover to another  has been a  major  and 
costly endeavor because: (i) physical capabilities dif- 
fer from one rover to another, (ii) rovers have  differ- 
ent control and software architectures,  and (iii) rovers 
are complex systems that integrate many disciplines. 
Because robotics  systems cover several domain areas, 
researchers of a single domain need to integrate  their 
newly developed technology into  the complex robotic 
environment. Proper  integration requires an in-depth 
understanding  and  characterization of the behavior of 
various components of the system, which vary from one 
platform to another. 

The CLARAty architecture, which stands for Cou- 
pled Layered Architecture for Robotic Autonomy, aims 
at  developing flexible and reusable software components 
for robotic systems [20]. These components are in- 
tended to support  autonomy software which plans  and 
schedules robot activities. The CLARAty architecture 
modifies the conventional three-level robotic architec- 
ture into a new two-layered design: the Functional 
Layer and  the Decision Layer. The Functional Layer 
provides a representation of the system components and 
an implementation of their basic functionalities. The 
Decision  Layer is the decision making engine that drives 
the Functional Layer. 

One of our goals is to provide a design that allows 
non-experts in a domain to use and  integrate  these com- 
ponents in their applications. To do so, we need to 
capture well-understood and well-developed  knowledge 
from the various domains into generalized components. 
Just like an operating  system provides a level of ab- 
straction from the computational  hardware, so does the 
Functional Layer provide a level of abstraction for the 
robotic systems. 

11. BACKGROUND 

There  has been several efforts focused on developing 
robotic  architectures. Typical robot and autonomy  ar- 
chitectures  are comprised of three levels - Functional, 
Executive, and  Planning levels [l] [lo] [17].  Some ar- 
chitectures emphasized one area over others  and  thus 
became more dominant in that domain. For example, 
some architectures emphasized the planning aspects of 
the system [7] [8], others emphasized the executive [4] 
[lS], while others emphasized the functional  aspects of 
the system [19]  [14]  [16]. There is on-going research in 
activities aimed at blurring the distinction between the 
planning and executive layers [9] [ll]. Other architec- 
tures  did not explicitly follow this typical breakdown. 
Some focused on particular paradigms such as a fuzzy- 
logic based implementation [12] or a behavior-based im- 
plementation [2] [5]. There  has been considerable effort 
in architectures that addressed multiple and  cooperat- 
ing robots [15]  [13]. 

One difference between the CLARAty architecture 
and  the conventional three-level architectures is the ex- 
plicit distinction between levels of granularity  and levels 
of intelligence. In conventional architectures both gran- 
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In a third  implementation, one might close the feed- 
back loop using software running  on an embedded pro- 
cessor. While these are  three different implementations 
of a motion control system, the behavior requirements 
of the controlled motor are  the same. In  any of these 
implementation, you  would still like to  do position com- 
manding, velocity profiling, and  trajectory control. You 
would also like to detect  and  report  stall conditions and 
be able to interrupt  the motion. You would also like to 
read the current  and desired positions, velocities, ac- 
celerations, and  health status. For a person developing 
vision-based navigation component for a mobile robot, 
it is only necessary to understand  the behavior of the 
component rather  than  be required to have intimate 
knowledge of the implementation and hardware  details. 
Nor should they have a particular  implementation  inad- 
vertently influence their design of vision-based naviga- 
tion algorithms. The Motor and  CoordMotors  are an 
abstract  representation for motion control that define 
what the components are supposed to do. These com- 
ponents hide the details of the implementation  without 
compromising particular  features of the hardware. 

Another example is that of an imaging system. The 
primary function of such a  system is to acquire images. 
How the imaging system acquires the image depends, 
largely, on its implementation. In some systems, an 
analog camera is connected to a framegrabber  mounted 
in a  computational backplane. In  other systems, a digi- 
tal camera is  used and  the image is transmitted  through 
a fast serial interface directly to  the host memory. In 
either case, the primary function of the imaging sys- 
tem remains the same, i.e. to acquire images. We can 
represent such a  system by an  abstract Camera com- 
ponent that publishes a uniform interface for acquiring 
and synchronizing image acquisition but hides the de- 
tails of its implementation and  the runtime models. 

B. Component Classification 
We  will present a classification based on the  abstract 

physical and functional components of the system that 
we have been evolving  over several years. We use an 
object-oriented system decomposition to provide sev- 
eral  abstractions for the components of the systems. 
Physical abstract components are extended to  concrete 
components that  tie  into real-system or to simulation 
components that tie  into  virtual  systems.  Components 
are implemented using classes. The  terms  are used in- 
terchangeably in this  article. 

There  are  three main types of classes in our h n c -  
tional Layer: (1) data structure classes, (2) generic 
classes (physical and  functional), (3) specialized classes 
(physical and  functional). All three  types of classes con- 
tain domain knowledge from different disciplines. They 
are  integrated in a framework to maximize code reuse, 
eliminate duplicated functionality, and simplify code in- 
tegration. As a  result,  there  are  relationships  and de- 
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pendencies among the various classes. Together they 
provide a modular  but well-integrated solution. 

Next, we will describe these different types of classes. 
A description of the relationships among these compo- 
nents will  follow. 

C. Relationships  among  the  Different  Components 

There  are two types of relationships among these 
components: inheritance,  and aggregation [6]. As  we 
have just seen, the relationship between generic and 
specialized components is that of inheritance. Special- 
ized  classes are derived from the generic classes. Both 
generic and specialized classes are of the same type.  In 
aggregation, however, the aggregated component has a 
different type  than  that of the aggregate. Aggregation 
is used to provide components with different  levels of 
granularity. For example, a Manipulator class aggre- 
gates lower-level Motor class and  Link class objects. 

The reason why such a decomposition of robotic sys- 
tems is possible is that components at the lower  levels of 
granularity  can  be implemented with little or no knowl- 
edge of their neighboring components. In  other words, 
the coupling among low-level components is  loose  for 
the most part.  The coupling among these compo- 
nents increases as we move to higher-level components. 
Higher-level components  aggregate lower-level compo- 
nents  and  manage the interaction of their  subordinate 
components. This  approach  abstracts the functional- 
ity of components and reduces the complexity of the 
system significantly. 

IV. DATA STRUCTURE CLASSES 
The  data  structure classes are classes that provide 

handling,  transformation,  and  storage of data. One 
characteristic of data structures is that they do not have 
any executive capability, making them the easiest to im- 
plement and  port  on multiple operating systems. While 
their efficiency  is very important,  they themselves do 
not invoke other  threads  (tasks). However, they must 
be reentrant to support being simultaneously executed 
by different threads. 

Data  structures  are  the most reused components in 
the system.  There is not a single data structure that 
dominates in the architecture; but  there  are several 
types that are used throughout  the Functional Layer. 
The challenge in the design of data structures is to en- 
hance their reusability across the different robotic do- 
mains. 

There  are two types of data structures relevant to 
our discussion: (1) general-purpose data structures, 
and (2) domain-specific data structures. General- 
purpose data structures  are reusable beyond the scope 
of robotics applications. Therefore, whenever suitable, 
we leverage standardized developments of these gen- 
eral data structures, such as the  Standard Template 
Library [3]. Whenever such implementations are not 

Fig. 2. The Arrayclass hierarchy 

available for real-time operating  systems,  or whenever 
they impose constraints that are  not  appropriate for 
robotic applications, we replace them with alterna- 
tive customized implementations maintaining the same 
interface. Examples of general-purpose data struc- 
tures are: Array,  Vector,  Matrix, B i t ,  LinkedList, 
Map, Container,  String and so on. Examples of do- 
main specific data structures  are: Image, Message, 
Resource,  Location, HTrans(homogeneous transfor- 
mation), quaternion and so on. 

Some domains impose certain  constraints on the de- 
sign and implementation of their data structures. For 
example, a two-dimensional array class created by in- 
stantiating  a vector of a vector using the  vector class 
of the  Standard Template  Library  (STL)  cannot serve 
as a  parent for our Matrix class, which  in turn is a 
parent class for our Image class. The Image and 
Matrix classes must have contiguous memory alloca- 
tions of their elements for  efficient processing. The pro- 
cessing requirements of these two derived classes impose 
certain  constraints on the design of their base class. In 
other words, a trade-off  is made in favor of efficiency 
over flexibility of the  data  structure, which  influences 
the design of the  Array/  Matrix/ Image hierarchy. Fig- 
ure 2 shows the current relationships between these 
data  structures expressed using the Unified Modeling 
Language (UML) [6]. 

V. GENERIC CLASSES 

Generic classes are classes that provide an abstract 
description and  implementation of the behavior of a 
component. Generic classes can be  active,  i.e.  their ob- 
jects can generate  separate  threads of execution and  run 
within multiple threads. In other words, these classes 
can have local executive capability. For example, a 
Motor class can  generate two threads of execution: one 
for control and  the other for feedback. Some classes 
also have local planning capabilities. There  are two 
types of generic classes: generic physical classes (GPC) 
and generic functional classes (GFC). 
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Fig. 3. A typical  generic  physical  component  structure 

A .  Generic Physical Classes 

A generic physical component (GPC) is a class that 
defines the  structure  and behavior of a physical object 
in an abstract sense. These  type of classes expose the 
capabilities of the components independent of the un- 
derlying hardware configuration. Some of these classes 
have partial  implementations since they  are eventually 
attached to physical/simulation objects that complete 
their  implementation. The objects to which they at- 
tach  are of the same  type. The extent of the im- 
plementation  depends on the knowledge available to 
that class at that particular level of abstraction. Ex- 
amples of such classes are: Motor, Jo in t ,  Wheel, 
A r m ,  Mast,  Locomotor,  Rover, Camera, F i l t e r m e e l ,  
Gyro, DigitalIO, AnalogIO, Socket, and  SunSensor. 
These  components  appear at different levels of granular- 
ity in the Functional Layer. Figure 3 shows an illustra- 
tion of a typical generic physical component. The char- 
acteristics of these generic components are that they: 

Represent an abstract view of a physical entity. 
Attach to concrete physical classes of the same 
type.  The physical classes complete the implemen- 
tation of the generic class interface. 
Provide generic public interfaces that supports dif- 
ferent physical implementations. The interfaces 
define the functionality  and services of the com- 
ponent. 
Provide the  runtime model for component’s opera- 
tion. 
Manage local atomic resources and resolve local 
conflicts. 
Encapsulate the  states of a component and provide 
access to  the  states through  their public interface. 
The Decision Layer can  query  any state of a com- 
ponent at any  time. 
Provide local state estimation based on information 
available within the scope of the component. May 
attach  to  external generic estimators (e.g. Kalman 

Filter) 
Provide resource usage prediction in response to 
queries from the Decision Layer. 
May  have internal state machines. 
May include or reference other generic physical 
components. Such components are made publicly 
accessible to allow  access to subordinates. 

A.l  The  State and StateHandler Classes 
Components use state variables for logging, track- 

ing, and recovery strategies.  Components can have nu- 
merous state variables depending on  what  states  are 
interesting to a particular  application. State informa- 
tion  can have different forms. It may be contained in 
a software variable or a hardware register. To track 
hardware registers, state variable are created to mirror 
these registers. Doing so enables tracking and logging 
of a  particular state for planning and recovery purposes. 
Typical components can have tens of states. 

A S ta t e  class is designed to provide a uniform han- 
dling of all state variables. The S t a t e  is a template- 
based class that wraps the  actual  state variable. State 
variables can be represented by integers, vectors, ma- 
trices,  bit  patterns,  and so on. The S t a t e  class tracks 
transitions, time-tags and logs state history. Internal 
state machines keep track of current states  and allow- 
able state transitions. The S ta t e  class can attach  to 
an external StateHandler class, which provides addi- 
tional global functionality such as  the periodic monitor- 
ing of any selected subset of the system’s states. Such 
state tracking can be selectively disabled or completely 
eliminated for applications that do not require  this fea- 
ture. 

State information can only be accessed through  the 
state query interface. States can be  internally moni- 
tored by the component or  externally monitored by the 
StateHandler, other components, or by the Decision 
Layer. A public or private  operation of a  particular 
component can create a new internal  thread to monitor 
a state variable and  act on state  transitions. A single 
state can be monitored by several components simulta- 
neously (i.e. from several threads of control). To do so 
successfully, the  State class implementation  must  be 
reentrant. 

A.2 State Estimation 

Like state variables, the  state estimation  can have 
different forms. The estimation of the local state is 
implemented within the scope of the component and 
may be implemented in software, hardware,  or  a com- 
bination of both. If there is redundancy in the infor- 
mation available to a component, it is used to provide 
better  estimates of the  state. While estimation of a 
state is typically limited to  the knowledge available to 
the component, more sophisticated  estimates  can be ob- 
tained by querying higher-level components that have 
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larger scope. State estimation occurs upon request, ei- 
ther  external or internal, at which time the component 
executes the proper  estimation  operation,  updates the 
state variable, and  returns  the estimate. 

A.3 Resource Queries 
In  addition to  state queries, these components sup- 

port resource queries. At any  time, a component can be 
queried about  the resources required to execute an op- 
eration  and  returns  the information to  the client. The 
information can  be in the form of a single number,  a 
vector presenting the resource usage profile, or a set of 
profiles. 

A.4 Local Execution  and  Planning 
Both generic physical and functional components can 

have local executive and planning capabilities. While 
this is limited to  the scope of the component, higher- 
level components enjoy executive control over their sub- 
ordinates. Global resources, such as power and mem- 
ory, that couple all components of the system  are man- 
aged by the Decision Layer. In some sense, the Func- 
tional Layer provides different granularity of baseline 
functionality for the Decision Layer. Higher-level  com- 
ponents hide the complexities of their  subordinates. 

B. Generic Functional Components 

A generic functional class (GFC) is an  abstract 
class that describes the interface and functionality of 
a generic algorithm. It provides a framework for  im- 
plementing complex functional algorithms. A generic 
functional class can have a complete implementation of 
its  functionality because it interfaces with generic phys- 
ical classes. Generic functional components are simi- 
lar in structure to generic physical components except 
that they do not attach  to hardware or simulation com- 
ponents. Examples of generic functional components 
are: TrajectoryGenerator,  ObjectFinder,  Visual- 
Navigator,  Stereovision, and Localizer. The 
S t a t e  class presented above is also an example of a 
generic functional  component. 

Generic functional components may sometimes 
use generic physical components in their imple- 
mentation. An example of such a class is the 
VisualOdometer class. This class implements an algo- 
rithm that combines robot motion estimates with visual 
information to provide accurate position estimates. It 
uses the Camera (GPC) class to acquire successive  im- 
ages and  the Locomotor (GPC) class to get a dead- 
reckoning estimate of the robot’s motion. It  then com- 
bines the information to provide an a refined estimate of 
the robot’s position. Another example of a generic func- 
tional component is the  RoverLocalizer class, which 
uses stereo vision from the  mast of the rover to improve 
position estimation.  This class uses generic Mast and 
Camera classes in its  implementation. 

Similar to generic physical components, generic func- 
tional components publish their interfaces and hide 
their  internal implementations. The complexity of these 
components varies from one type to  another. However, 
they should all provide an easy to use interface for the 
novice user. 

In  addition to executive capabilities, certain generic 
functional components may have local planning capabil- 
ities. One such example is the  VisualNavigator class, 
which  uses  vision to plan  paths  and avoid obsta- 
cles. The  VisualNavigator class uses  Camera and 
Stereovision classes  for image acquisition and  three- 
dimensional map  generation respectively. Using this 
information, it plans a feasible path  in  its environment. 
The  VisualNavigator class has local planning capabil- 
ities considering only the knowledge of its aggregated 
components. If the  VisualNavigator class is capa- 
ble of generating multiple paths,  the results will be re- 
ported to  the Decision Layer for a final selection. The 
Decision  Layer has  a larger scope than  the  Visual- 
Navigator class and  carries  out global planning and 
optimization  taking into consideration resource con- 
straints  and  other goal requirements of the system. 

VI.  SPECIALIZED  CLASSES 

Specialized classes are extensions of the generic 
classes that  adapt  the generic components to a partic- 
ular robotic platform. This is  known as the  adaptation 
process and these specialized classes are also known as 
the  adaptor classes. Specialized classes complete the 
implementation of their generic counterparts  and may 
override some default implementation if necessary. 

Similar to their generic counterparts,  these special- 
ized  classes can have executive capabilities.  These exec- 
utive capabilities encapsulate the details of the  thread- 
ing model and implementation that are unique to  an ex- 
isting hardware  platform. Such encapsulation enables 
the design of higher-level abstractions (generic classes) 
without worrying about  system specific details. 

Just like the generic classes, there  are two types of 
specialized classes: specialized physical classes (SPC) 
and specialized functional classes (SFC). The special- 
ized nature of these classes makes them  suitable for 
single use only. 

A .  Specialized  Physical  Classes 
A specialized physical class is a class that  adapts  the 

functionality of a generic class to a particular  hard- 
ware component. A specialized class is derived from 
its generic counterpart.  It completes the implementa- 
tion of its generic parent  and in some cases overrides 
the generic implementation by one that is suited for the 
particular  robotic  system. In  short,  they  tie  the generic 
components to  the actual  hardware components. 

This process is  by far the most difficult and  ardu- 
ous task. Each hardware component comes with its 
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Fig. 4. Generic and Specialized Motor classes 

own architecture  and  theory of operation. Each generic 
component also provides its own behavior and theory of 
operation. Putting  the two together without careful de- 
sign can  result  in an architectural mismatch and poor 
system performance. Ideally we would  like to lever- 
age the features of the hardware  architecture  and at 
the same  time fit it "nicely" into  the generic compo- 
nents.  This is the  job of the specialized classes, which 
implement the behavior defined by the generic compo- 
nents using the functionality provided by the hardware 
components. A complete match of functionality cannot 
always be accomplished. Therefore, these specialized 
classes must adapt  the hardware to  the behavior to  the 
extent possible. 

An example of specialized physical classes are shown 
in Figure 4. The  ControlledMotor class is the  GPC 
that provides the interface and  partial functionality of 
controlled motor  operations. Two classes are special- 
ized from this class: the  R7-ControlledMotor which  is 
used in the Rocky 7 rover and  the  R8Xontrolled- 
Motor  which  is used in the Rocky 8 motor. The 
Rocky 7 implements its  motor control using a  shared 
parallel bus (implementing using the digital 1/0 board 
- VPAR10) and a Rocky 8 implements its motor control 
using HCTL-1100 control chips and  the serial 12C bus. 
The  relationship of these to  the  ControlledMotor class 
is through  inheritance  and aggregation. This  pattern 
allows users to instantiate a ControlledMotor object 
using either  one of the specialized classes. 

B. Specialized Functional  Classes 

A specialized functional class is a class that is de- 
rived from its generic counterpart: the generic func- 
tional class. It is only used in cases where an applica- 
tion requires more than  parameter adjustments of the 
algorithms.  This specialized adaptation allows the user 
to modify the functionality of the generic algorithms 
and override certain  operations for a  particular imple- 
mentation.  These classes are  not very common. 

Specialized classes are typically application specific. 
In some cases, the generic component types  and  their 

' Fig. 5. Generic and  Specialized Manipulator classes 

interfaces are not sufficient  for a  particular implemen- 
tation of an algorithm. As a  result, an extended version 
of the generic component can be used instead. Using 
the extended classes instead of their generic counter- 
parts limits the portability to different robotic  plat- 
forms. Algorithms that use generic component types 
in their implementation will operate using any special- 
ized (derived) types. 

VII.  AN EXAMPLE OF THE MANIPULATOR  CLASS 
HIERARCHY 

Consider the Rocky 8 implementation of manipula- 
tion. Rocky 8 is a Mars rover prototype that has  a four 
degree-of-freedom (DOF)  mast  and a four DOF  arm. 
Figure 5 shows the manipulator class hierarchy and  its 
relationship with its  parent, aggregates,  and children. 
At the  top of this hierarchy is the  Manipulator class 
which  is a generic physical component.  This class is 
derived from the CoordMotors class. It also aggregates 
a variable number of ControlledJoint and  Link ob- 
jects.  In  other words, a manipulator is a system of  co- 
ordinated motors that has a number of links and  joints. 
The  Manipulator class provides generic functionality 
such as individual joint mode control  and global veloc- 
ity/acceleration control. It also contains  strategies for 
recovery from error conditions. Additionally, it pro- 
vides hooks for attaching to various end effectors. 

Two manipulator  types can be derived from the 
Manipulator class: the  Serial-Manipulator class and 
the  Parallel-Manipulator class. A serial manipula- 
tor is a  robotic  arm that concatenates  a number of 
joints  and links. A parallel manipulator is a mechanism 
whose links are  attached in parallel to  an  output plane. 
An example of a parallel manipulator is the Stewart 
platform that is  used in motion simulators.  There is 
a duality in the equations governing the kinematics of 
serial and parallel manipulators. Serial manipulators 
have relatively simple forward kinematics while parallel 
manipulators have relatively simple inverse kinematics. 
Hence, the  Serial-Manipulator class has  the generic 
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forward kinematic equations that will apply to all types 
of serial manipulators, while the specialized R8Arm will 
have the closed-form inverse kinematics for the partic- 
ular  arm. Similarly, the  ParallelManipulator class 
will have the generic inverse kinematics. There  are nu- 
merical methods for solving general inverse kinematic 
problems for serial manipulators.  These  can also be 
made available in the  Ser ia lAanipulator  class. Hy- 
brid manipulators that combine both serial and parallel 
linkages are  represented by a  separate class (not shown 
here). 

A serial manipulator  can be used as an  arm or  a leg 
for a  robot. It can  be  mounted on a fixed platform 
or on a mobile robot. Each of these  options requires 
additional  functionality  and behavior that a serial ma- 
nipulator  must support. For example, it is  helpful  for 
a manipulator  mounted on a mobile platform to know 
about  the mobility system  and  be able to control it 
in some cases. One such case is  when  you are tele- 
operating  this  arm. If the  arm was not aware of the 
mobility system, as you extend the  arm  to  the edge 
of its workspace, the  arm loses dexterity  and soon be- 
comes singular. But because the  arm knows that  it is 
mounted on a mobile platform,  then the  arm can com- 
mand the mobility system to advance the robot slightly 
so as to shift the workspace of the  arm forward, keeping 
the  arm in the most  dexterous region of its workspace. 
The  arm interface remains the same but  its functional- 
ity  and workspace are extended. This functionality can 
be implemented within a MobileManipulator class, 
which  uses a generic Locomotor class in its implemen- 
tation.  The MobileAanipulator is derived from the 
SerialManipulator class. One type of mobile ma- 
nipulator is the  RoverAanipulator class. In  addition 
to supporting  the functionality of a mobile manipula- 
tor,  the  RoverManipulator class extends the interface 
of the  MobileManipulator class to include additional 
operations, such as stow(),  unstow0 and  other rover 
specific functionality. 

Consider the Rocky 8 rover, which  defines  two special- 
ized  classes derived from the  RoverAanipulator class. 
They are  the  R8Mast class and  the R8Arm class. 
These classes define the joint configuration and parame- 
ters, link types  and dimensions, inverse kinematics, and 
other  properties unique to these  manipulators. 

During the  adaptation process of the  arm  and  mast 
software, the generic Rover-Manipulator class is spe- 
cialized to  an R 8 4 r m  and an R8Mast classes. The 
RoverAanipulator class provides generic forward and 
inverse kinematics, joint motion control,  trajectory 
tracking,  conditional  motion,  and error recovery. The 
specialized R8Arm and R8Aast classes  specify the link 
dimensions, joint  limits, actuator types,  and  end effec- 
tor  type.  They also override the generic kinematics of 
the  Manipulator class with the closed-form kinematics 
that are specifically derived for these instances. 

Fig. 6 .  The Rocky 7 rover and the PDM mockup 

VIII. EXPERIMENTAL RESULTS - RUNNING ON 
DIFFERENT PLATFORMS 

A .  System & Computing Architecture of Rocky 7 

Rocky 7 is a Mars rover prototype that has six drive 
wheels with  a rocker-bogey mobility mechanism. It has 
two steerable front wheels and four non-steerable back 
wheels. Mounted onto  the rover platform  are two ma- 
nipulators: a two  degree-of-freedom (DOF)  arm with 
two independently actuated scoops, and a three degree- 
of-freedom mast.  The  arm has a shoulder roll and  a 
shoulder pitch, while the mast  has an additional el- 
bow pitch.  Three  pairs of stereo  cameras  are  mounted 
on the rover: a  stereo  camera  pair is mounted  on the 
mast,  and two stereo  camera  pairs are mounted on the 
front  and back sides of the vehicle. The computing sys- 
tem consists of a 3U VME backplane with a 60 MHz 
68060 processor with on-board Ethernet, two CXlOO 
frame-grabbers, a VPARlO digital 1/0 board,  and a 
VADC2O analog 1/0 board.  The main processor runs 
a VxWorks 5.3 real-time operating  system. Each actu- 
ator (DC brushed) is controlled by a separate micro- 
controller (LM629) using an 8 bit parallel bus  through 
the VPAR10. The on-board processor communicates 
with an external host via  a wireless Ethernet. 
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B. System tY Computing  Architecture for PDM mockup 

The PDM mockup is a fixed manipulation platform 
with a 4-DOF arm  and a 4-DOF mast mounted onto 
the platform. Both  the  mast  and  the  arm have a simi- 
lar  joint configuration which include a shoulder roll, a 
shoulder pitch, an elbow pitch  and  a wrist pitch.  The 
arm  has  a single DOF gripper while the mast  has  a 
stereo  camera  pair. The computing system is different 
than Rocky 7 and consists of a 3U cPCI backplane with 
a 300 MHz Pentium processor with on-board Ethernet, 
two PX610 frame-grabbers,  and  a Sensoray digital 1/0 
board. The main processor runs  a VxWorks 5.3 real- 
time  operating  system. Each actuator (DC brushed) 
is controlled by a separate micro-controller (LM629) 
connected to  the Sensoray board 1/0 board. The on- 
board processor communicates with an external host 
via  a wired Ethernet at a maximum throughput of 10 
MB/sec. 

C. Implementation Results 

The Rocky 7 rover and  the PDM mockup have  dif- 
ferent physical characteristics as well as different hard- 
ware implementations. Parts of the CLARAty Func- 
tional Layer has been implemented and  tested on both 
systems. On the Rocky rrover, we were able to demon- 
strate parallel execution of arm, mast  and mobility op- 
erations. We also demonstrate continuous driving and 
autonomous vision-based sample acquisition with par- 
allel execution of the vision processing and  the drive 
commanding. On the PDM mockup, we were able 
to demonstrate vision-based sample acquisition from 
a fixed platform  sharing  about 60% of the Functional 
Layer code. This  percentage will increase as we further 
develop the generic framework. The proposed architec- 
ture was flexible, easy to use, and light-weight (memory 
and  speed). Simultaneous multiple task  operations were 
easy to invoke  even  when there  are  shared resources that 
needed to be resolved at  high context switching speeds. 
For example, both systems used a shared 8 bit paral- 
lel bus to control  their actuators). This resource was 
managed locally within the ControlledMotor class. 

IX. FUTURE WORK 
We plan to continue the development of the Func- 

tional  and Decision Layers of the CLARAty architec- 
ture. We will be implementing the interface between 
the two layers for the resource queries. We  will also 
develop the various domains of the Functional Layer 
which include Input/Output, Motion Control, Mobility 
and Navigation, Manipulation,  Perception  and Vision, 
Resource Management, System Control, Communica- 
tion,  and Sensor and Instrument Processing packages. 
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